For Better Performance Please Use Chrome or Firefox Web Browser

42- M. Behboodi (Joint with G. Behboodi Eskandari) On rings over which every finitely generated module is a direct sum of cyclic modules, Hacettepe J. Mathematics and Statistics (Accepted) (ISI)

In this paper we study (non-commutative) rings R over which every nitely generated left module is a direct sum of cyclic modules (called left FGC-rings). The commutative case was a well-known problem studied and solved in 1970s by various authors. It is shown that a Noetherian local left FGC-ring is either an Artinian principal left ideal ring, or an Artinian principal right ideal ring, or a prime ring over which every two-sided ideal is principal as a left and a right ideal. In particular, it is shown that a Noetherian local duo-ring R is a left FGC-ring if and only if R is a right FGC-ring, if and only if, R is a principal ideal ring.

Journal Papers
Month/Season: 
January
Year: 
2014